Telegram Group & Telegram Channel
Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/912
Create:
Last Update:

Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/912

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA